79 research outputs found

    Weak-Localization in Chaotic Versus Non-Chaotic Cavities: A Striking Difference in the Line Shape

    Full text link
    We report experimental evidence that chaotic and non-chaotic scattering through ballistic cavities display distinct signatures in quantum transport. In the case of non-chaotic cavities, we observe a linear decrease in the average resistance with magnetic field which contrasts markedly with a Lorentzian behavior for a chaotic cavity. This difference in line-shape of the weak-localization peak is related to the differing distribution of areas enclosed by electron trajectories. In addition, periodic oscillations are observed which are probably associated with the Aharonov-Bohm effect through a periodic orbit within the cavities.Comment: 4 pages revtex + 4 figures on request; amc.hub.94.

    Electronic transport through ballistic chaotic cavities: reflection symmetry, direct processes, and symmetry breaking

    Full text link
    We extend previous studies on transport through ballistic chaotic cavities with spatial left-right (LR) reflection symmetry to include the presence of direct processes. We first analyze fully LR-symmetric systems in the presence of direct processes and compare the distribution w(T) of the transmission coefficient T with that for an asymmetric cavity with the same "optical" S matrix. We then study the problem of "external mixing" of the symmetry caused by an asymmetric coupling of the cavity to the outside. We first consider the case where symmetry breaking arises because two symmetrically positioned waveguides are coupled to the cavity by means of asymmetric tunnel barriers. Although this system is asymmetric with respect to the LR operation, it has a striking memory of the symmetry of the cavity it was constructed from. Secondly, we break LR symmetry in the absence of direct proceses by asymmetrically positioning the two waveguides and compare the results with those for the completely asymmetric case.Comment: 15 pages, 8 Postscript figures, submitted to Phys. Rev.

    Mesoscopic fluctuations of Coulomb drag between quasi-ballistic 1D-wires

    Get PDF
    Quasiballistic 1D quantum wires are known to have a conductance of the order of 2e^2/h, with small sample-to-sample fluctuations. We present a study of the transconductance G_12 of two Coulomb-coupled quasiballistic wires, i.e., we consider the Coulomb drag geometry. We show that the fluctuations in G_12 differ dramatically from those of the diagonal conductance G_ii: the fluctuations are large, and can even exceed the mean value, thus implying a possible reversal of the induced drag current. We report extensive numerical simulations elucidating the fluctuations, both for correlated and uncorrelated disorder. We also present analytic arguments, which fully account for the trends observed numerically.Comment: 10 pages including 7 figures. Minor changes according to referee report. Accepted for PR

    Escape from noisy intermittent repellers

    Full text link
    Intermittent or marginally-stable repellers are commonly associated with a power law decay in the survival fraction. We show here that the presence of weak additive noise alters the spectrum of the Perron - Frobenius operator significantly giving rise to exponential decays even in systems that are otherwise regular. Implications for ballistic transport in marginally stable miscrostructures are briefly discussed.Comment: 3 ps figures include

    Ehrenfest time dependent suppression of weak localization

    Get PDF
    The Ehrenfest time dependence of the suppression of the weak localization correction to the conductance of a {\em clean} chaotic cavity is calculated. Unlike in earlier work, no impurity scattering is invoked to imitate diffraction effects. The calculation extends the semiclassical theory of K. Richter and M. Sieber [Phys. Rev. Lett. {\bf 89}, 206801 (2002)] to include the effect of a finite Ehrenfest time.Comment: 3 Pages, 1 Figure, RevTe

    Effects of Fermi energy, dot size and leads width on weak localization in chaotic quantum dots

    Full text link
    Magnetotransport in chaotic quantum dots at low magnetic fields is investigated by means of a tight binding Hamiltonian on L x L clusters of the square lattice. Chaoticity is induced by introducing L bulk vacancies. The dependence of weak localization on the Fermi energy, dot size and leads width is investigated in detail and the results compared with those of previous analyses, in particular with random matrix theory predictions. Our results indicate that the dependence of the critical flux Phi_c on the square root of the number of open modes, as predicted by random matrix theory, is obscured by the strong energy dependence of the proportionality constant. Instead, the size dependence of the critical flux predicted by Efetov and random matrix theory, namely, Phi_c ~ sqrt{1/L}, is clearly illustrated by the present results. Our numerical results do also show that the weak localization term significantly decreases as the leads width W approaches L. However, calculations for W=L indicate that the weak localization effect does not disappear as L increases.Comment: RevTeX, 8 postscript figures include

    Quantum pumping and dissipation: from closed to open systems

    Full text link
    Current can be pumped through a closed system by changing parameters (or fields) in time. The Kubo formula allows to distinguish between dissipative and non-dissipative contributions to the current. We obtain a Green function expression and an SS matrix formula for the associated terms in the generalized conductance matrix: the "geometric magnetism" term that corresponds to adiabatic transport; and the "Fermi golden rule" term which is responsible to the irreversible absorption of energy. We explain the subtle limit of an infinite system, and demonstrate the consistency with the formulas by Landauer and Buttiker, Pretre and Thomas. We also discuss the generalization of the fluctuation-dissipation relation, and the implications of the Onsager reciprocity.Comment: 4 page paper, 1 figure (published version) + 2 page appendi

    Feynman's Propagator Applied to Network Models of Localization

    Full text link
    Network models of dirty electronic systems are mapped onto an interacting field theory of lower dimensionality by intepreting one space dimension as time. This is accomplished via Feynman's interpretation of anti-particles as particles moving backwards in time. The method developed maps calculation of the moments of the Landauer conductance onto calculation of correlation functions of an interacting field theory of bosons and fermions. The resulting field theories are supersymmetric and closely related to the supersymmetric spin-chain representations of network models recently discussed by various authors. As an application of the method, the two-edge Chalker-Coddington model is shown to be Anderson localized, and a delocalization transition in a related two-edge network model (recently discussed by Balents and Fisher) is studied by calculation of the average Landauer conductance.Comment: Latex, 14 pages, 2 fig

    Quantum Pumping in the Magnetic Field: Role of Discrete Symmetries

    Full text link
    We consider an effect of the discrete spatial symmetries and magnetic field on the adiabatic charge pumping in mesoscopic systems. In general case, there is no symmetry of the pumped charge with respect to the inversion of magnetic field Q(B) \neq Q(-B). We find that the reflection symmetries give rise to relations Q(B)=Q(-B) or Q(B)=-Q(-B) depending on the orientation of the reflection axis. In presence of the center of inversion, Q(B) = 0. Additional symmetries may arise in the case of bilinear pumping.Comment: 4 page

    High-frequency dynamics of wave localisation

    Full text link
    We study the effect of localisation on the propagation of a pulse through a multi-mode disordered waveguide. The correlator of the transmitted wave amplitude u at two frequencies differing by delta_omega has for large delta_omega the stretched exponential tail ~exp(-sqrt{tau_D delta_omega/2}). The time constant tau_D=L^2/D is given by the diffusion coefficient D, even if the length L of the waveguide is much greater than the localisation length xi. Localisation has the effect of multiplying the correlator by a frequency-independent factor exp(-L/2xi), which disappears upon breaking time-reversal symmetry.Comment: 3 pages, 1 figur
    • …
    corecore